Unfortunately, there is not a perfect detector for the entire infrared region. As a consequence, there are a number of factors to consider when choosing an infrared detector for your measurement, including

- Spectral range
- Sensitivity
- Cooling method
- Response speed

It is often not possible to optimize all the desired factors in a single detector; some compromises will be needed. For a detailed description of these factors, please refer to "Characteristics and use of infrared detectors."

Some of the more commonly used detectors at our beamline are listed below. For a complete listing of the available infrared detectors, please see our detector list

.

Detector

Spectral Range / cm ⁻¹ Sensitivity (D*) / cm•Hz ^{1/2}

•W -1

-6

Cooling

Speed (Time constant) / s

DTGS

10-11,000 (depends on window material)

~2 x 10

Room Temp

~10

MCT A

650-11,000 ~2 x 10

Liquid N 2 ~10

MCT B

400-11,000	~4 x 10	9	
Liquid N	2	~10	-6
Si Bolometer			
3-5000	~5 x 10	9	
Liquid He	~10	-3	

Our infrared microscopes (Beamlines $\underline{1.4.3}$ and $\underline{1.4.4}$) are equipped with an MCT A detector because this detector provides the best sensitivity and speed over a broad spectral range covering the entire mid-infrared and most of the near-infrared (up to ~11,000 cm $^{-1}$

). One downside to these detectors is that they require liquid nitrogen. The dewars, however, last > 8 hours and liquid nitrogen is readily available at the ALS.